# Interim Design Review S.U.A.S. Student Unmanned Aerial System

**Senior Design Team# 14** 





**Team Members** 

Antwon Blackmon, ME

Walker Carr, ME

Alek Hoffman, EE

Ryan Jantzen, ME

Eric Prast, EE

Brian Roney, CpE





## Introduction

#### Primary Objectives:

- Systems Engineering approach for the design and manufacture of an Unmanned Aerial System (UAS)
- System must be designed for:
  - Waypoint Navigation
  - Autonomous Area Search for Ground Targets
  - Image Recognition of Ground Targets
- System must comply with the 2012 AUVSI Student UAS Competition requirements.

## Introduction

- To accomplish our primary objectives, our UAS must be comprised of several subsystems:
  - Aircraft Subsystem
  - Avionics Subsystem
  - Imagery Subsystem
  - Ground Station Control (GSC) Subsystem

# Airframe Design

- Conventional Planform
  - High Aspect Ratio
  - Moderate Wing Loading
  - Low Stall Speed
  - Fast Cruise Speed
- Airfoil Selection
  - High C<sub>I</sub>
  - Highest Possible L/D
  - Manufacturable

## Low Reynolds Number Airfoils

#### 100,000 < Re < 600,000





### Airfoil Comparison @ Re=3x10<sup>5</sup>





## SD7062 L.R.N. Airfoil



## **Initial Configuration**



## **Initial Configuration**

- Wing Span: 98 in
- Length: 55 in
- Fuselage Volume: 648 in<sup>3</sup>
- Aspect Ratio: 10
- T. O. Weight: 19.8 lbs
- Wing Loading: 3 lb/ft<sup>2</sup>
- Stall Speed: 28 mph
- Cruise Speed: 45 mph



## **Control Surfaces**



## **Further Analysis**

#### Further Aerodynamic Analysis



#### **Stability Analysis**



### **Material Decision Matrix**

|             | Material Selection Decision Matrix |                |       |              |           |             |            |             |        |             |      |  |
|-------------|------------------------------------|----------------|-------|--------------|-----------|-------------|------------|-------------|--------|-------------|------|--|
| Criteria    | Weight                             | Fiberglass and | d EPS | Fiberglass a | nd Spyder | Carbon Fibe | er and EPS | Carbon Fibe | er and | Hybrid Skin |      |  |
| Mass        | 0.35                               | 5              | 1.75  | 4            | 1.4       | 3           | 1.05       | 2           | 0.7    | 4           | 1.4  |  |
| Strength    | 0.3                                | 1              | 0.3   | 2            | 0.6       | 4           | 1.2        | 5           | 1.5    | 4           | 1.2  |  |
| Cost        | 0.25                               | 5              | 1.25  | 4            | 1         | 2           | 0.5        | 1           | 0.25   | 3           | 0.75 |  |
| Workability | 0.1                                | 5              | 0.5   | 5            | 0.5       | 5           | 0.5        | 5           | 0.5    | 5           | 0.5  |  |
|             |                                    |                |       |              |           |             |            |             |        |             |      |  |
| Total       | 1                                  |                | 3.8   |              | 3.5       |             | 3.25       |             | 2.95   |             | 3.85 |  |

#### Weight of air frame:

- 1. 10.75lb
- 2. 11.67lb
- 3. 11.73lb
- 4. 12.83lb
- 5. 11.61lb

#### Cost of material:

- 1. \$11.45/yd + \$8.77 for 5.5"x12"x24"
- 2. \$11.45/yd + \$30 for 5.5"x12"x24"
- 3. \$44.95/yd + \$8.77 for 5.5"x12"x24"
- 4. \$44.95/yd + \$30 for 5.5"x12"x24"

#### Strength:

- 1. 45.2kpsi + 25psi
- 2. 45.2kpsi + 60psi
- 3. 75.6kpsi + 25psi
- 4. 75.6kpsi + 60psi

### **Internal Structures**



Constructed of light weight spruce or carbon fiber reinforced balsa.

Weight of all internal components is supported by base plate while ribs provide structural stiffness and support for the wings.



## Wing Rib Analysis



•Loads from the wing will be transferred from the spar and wing joiners to the internal structure.

•Known max wing load will be used to determine if extra wood is needed or carbon fiber reinforcement is required.

## **Carbon Fiber Placement**



## Motor Type

- Decision Matrix
- Motor Type
- Decision Matrix Criteria:
- Cost (30%)
- Power Output (25%)
- Maintenance (20%)
- Ease of operation (15%)
- Weight (10%)

# Motor Type

|                      | 4-Stroke | 2-Stroke | Brushless | Brushed | Pulsejet |
|----------------------|----------|----------|-----------|---------|----------|
| Cost                 | .9       | 1.2      | 1.3       | 0.8     | 0.5      |
| Maintenance          | .6       | .7       | 0.9       | 0.6     | 0.5      |
| Power Output         | 1.2      | 1.0      | 1.1       | 0.6     | 1.2      |
| Ease of<br>operation | 0.5      | 0.6      | .7        | 0.6     | 0.5      |
| Weight               | 0.4      | 0.4      | 0.4       | 0.3     | 0.3      |
| Total                | 3.6      | 3.9      | 4•4       | 2.9     | 3        |

## Gimbal

- The UAV will need to recognize targets.
- The gimbal will be able to rotate about 2 axes.
- The gimbal will contain the camera.
- It will be located at the bottom of the plane.





#### **Engineering Analysis:**

- 1. Estimate total Aircraft Power requirements
  - General components
  - General specifications
- 2. Select Appropriate Battery models for requirements
  - NiMH
  - LiPO
- 3. Analyze Battery Concepts
  - Simulink
  - Decision Matrix



#### Estimate total Aircraft Power requirements

| Estimated component power consumption |               |           |  |  |  |  |  |  |  |
|---------------------------------------|---------------|-----------|--|--|--|--|--|--|--|
|                                       |               |           |  |  |  |  |  |  |  |
| Component                             | Current (mAh) | Power (w) |  |  |  |  |  |  |  |
| Motor                                 | 10000         | 296       |  |  |  |  |  |  |  |
| Autopilot                             | 40            | 0.26      |  |  |  |  |  |  |  |
| Camera                                | 308           | 2.002     |  |  |  |  |  |  |  |
| Video TX                              | 500           | 2.5       |  |  |  |  |  |  |  |
| Autopilot TX                          | 210           | 0.693     |  |  |  |  |  |  |  |
| CS Servos                             | 160           | 0.8       |  |  |  |  |  |  |  |
| Gimble Servos                         | 50            | 0.25      |  |  |  |  |  |  |  |
|                                       |               |           |  |  |  |  |  |  |  |
| Total                                 | 11268         | 302.505   |  |  |  |  |  |  |  |

- Battery Requirements:
  - Capacity > 12000 mAh
  - Cells = Electric motor required cells (Voltage)
- Two Battery Concepts:
  - 3 5000mAh NiMH batteries in parallel
  - 3 5000mAh LiPO batteries in parallel
  - Both provide a capacity of 15000 mAh
  - NiMH provides (1.2V/cell)(20 cells) = 24 V
  - LiPO provides (3.7V/cell)(8 cells) = 29.6 V





#### Simulink



1 hour flight time

#### 15000 mAh LiPO Battery



#### 15000 mAh NiMH Battery



- Decision Matrix:
- LiPO Battery Vs. NiMH Battery
- Grade (G):
  - Poor (1)
  - Satisfactory (2)
  - Good (3)
  - Excellent (4)
  - Outstanding (5)

- Decision Matrix:
- LiPO Battery Vs. NiMH Battery
- Decision Matrix criteria:
  - Performance: 20% weight
  - Weight: 25 % weight
  - Size: 25 % weight
  - Cost: 10 % weight
  - Safety: 20 % weight

### Decision Matrix:

| Battery Decisi |        | NiMH Batt | ery              |      | LiPO Battery |       |            |  |  |  |  |
|----------------|--------|-----------|------------------|------|--------------|-------|------------|--|--|--|--|
| Criteria       | weight |           | Grade Weighted G |      |              | Grade | Weighted G |  |  |  |  |
|                |        | •         |                  |      | •            |       |            |  |  |  |  |
| Performance    | 0.2    |           | 4                | 0.8  |              | 5     | 1          |  |  |  |  |
| Weight         | 0.25   |           | 3                | 0.75 |              | 4     | 1          |  |  |  |  |
| Size           | 0.25   |           | 1                | 0.25 |              | 5     | 1.25       |  |  |  |  |
| Cost           | 0.1    |           | 5                | 0.5  |              | 1     | 0.1        |  |  |  |  |
| Safety         | 0.2    |           | 5                | 1    |              | 3     | 0.6        |  |  |  |  |
|                |        |           |                  |      |              |       |            |  |  |  |  |
| Total          | 1      |           | 18               | 3.3  |              | 18    | 3.95       |  |  |  |  |
|                |        |           |                  |      |              |       |            |  |  |  |  |



- Autopilot Engineering Analysis
- Two Autopilot concepts
  - Ardupilot Mega
  - Paparazzi Tiny v2.11
- Basic Autopilot Flowchart
- Analyze Characteristics of Autopilot
  - Power usage
  - Size & weight
  - Board Layout
  - Ground Control System
  - Flight Simulator

### Autopilot Flow Chart



- Decision Matrix: Grading
  - Poor (1)
  - Satisfactory (2)
  - Good (3)
  - Excellent (4)
  - Outstanding (5)

- Decision Matrix: Weight
  - Power Usage 20%
  - Size 15%
  - Board Layout 25%
  - Ground Control System 30%
  - Flight Simulator 10%

#### Decision Matrix

| Autopilot Decis |        | Ardupilot | Mega  |            | Paparazzi Tiny v2.11 |       |            |  |  |  |
|-----------------|--------|-----------|-------|------------|----------------------|-------|------------|--|--|--|
| Criteria        | weight |           | Grade | Weighted G |                      | Grade | Weighted G |  |  |  |
|                 |        | -         |       |            |                      |       |            |  |  |  |
| Power Usage     | 0.2    |           | 3     | 0.6        |                      | 3     | 0.6        |  |  |  |
| Size & Weight   | 0.15   |           | 2     | 0.3        |                      | 4     | 0.6        |  |  |  |
| Board Layout    | 0.25   |           | 1     | 0.25       |                      | 4     | 1          |  |  |  |
| GCS             | 0.3    |           | 4     | 1.2        |                      | 4     | 1.2        |  |  |  |
| Flight Sim.     | 0.1    |           | 4     | 0.4        |                      | 5     | 0.5        |  |  |  |
|                 |        |           |       |            |                      |       |            |  |  |  |
| Total           | 1      |           | 14    | 2.75       |                      | 20    | 3.9        |  |  |  |





**Engineering Analysis:** 

- 1. With UAV Imagery requirements:
  - Review Generated Camera Concepts
  - Insure Camera Concepts can meet requirements
- 2. Analyze Camera Concepts
  - Calculate Resolution Estimates
  - Create Decision Matrix

## **Imagery Systems**







- Decision Matrix:
- Four Camera Concepts
- Grade (G):
  - Poor (1)
  - Satisfactory (2)
  - Good (3)
  - Excellent (4)
  - Outstanding (5)

- Decision Matrix:
- Four Camera Concepts
- Decision Matrix criteria:
  - Weight: 20 % weight
  - Mounting: 8 % weight
  - Resolution: 15 % weight
  - Zoom: 10 % weight
  - TX Ability: 8 % weight
  - Price: 15 % weight
  - Toughness: 5 % weight
  - Power Requirements: 10% weight
  - Dimensions: 9 % weight

## **Camera Decision Matrix**

| Camera Decision |        |         |                  |        |            |        |            |              |            |  |
|-----------------|--------|---------|------------------|--------|------------|--------|------------|--------------|------------|--|
| Matrix          |        | Nikon [ | <b>D300 DSLR</b> | Sony K | X-181 HQ   | Sony F | CB Block   | Axis 212 PTZ |            |  |
|                 |        |         |                  |        |            |        |            |              |            |  |
| Criteria        | Weight | Grade   | Weighted G       | Grade  | Weighted G | Grade  | Weighted G | Grade        | Weighted G |  |
| Weight          | 0.2    | 2       | 0.4              | 5      | 1          | 4      | 0.8        | 3            | 0.6        |  |
| Mounting        | 0.08   | 3       | 0.24             | 3      | 0.24       | 4      | 0.32       | 5            | 0.4        |  |
| Resolution      | 0.15   | 5       | 0.75             | 3      | 0.45       | 3      | 0.45       | 3            | 0.45       |  |
| Zoom            | 0.1    | 5       | 0.5              | 0      | 0          | 5      | 0.5        | 3            | 0.3        |  |
| TX Ability      | 0.08   | 3       | 0.24             | 3      | 0.24       | 5      | 0.4        | 4            | 0.32       |  |
| Price           | 0.15   | 1       | 0.15             | 5      | 0.75       | 3      | 0.45       | 2            | 0.3        |  |
| Taushaasa       | 0.15   | 1       | 0.15             |        | 0.75       | 2      | 0.45       | - <u>-</u>   | 0.5        |  |
| Tougnness       | 0.05   | 4       | 0.2              | 1      | 0.05       | 2      | 0.1        | 5            | 0.25       |  |
| Power Req.      | 0.1    | 5       | 0.5              | 4      | 0.4        | 3      | 0.3        | 3            | 0.3        |  |
| Dimensions      | 0.09   | 1       | 0.09             | 5      | 0.45       | 3      | 0.27       | 1            | 0.09       |  |
| Total           | 1      | 30      | 3.07             | 32     | 3.58       | 32     | 3.59       | 29           | 3.01       |  |

## **Imagery Analysis**



Focusing on Target Distance = 425 feet

Target is completely undistinguishable

## **Imagery Analysis**



4.1 Megapixel Camera Test Without Zoom

Target is still undistinguishable at this distance

## **Imagery Analysis**



Fully zoomed (5x optical zoom)

Image is hardly recognizable from this distance

## **Image Resolution Analysis**

$$R = \left(\frac{2h\cos(\theta)r}{\delta}\right)^2 * \frac{3}{4}$$

Flight Target Analysis:

- R =Camera Resolution
- h = Altitude
- $\theta$  = Camera Viewing Angle
- $\delta$  = Target Size
- r = Algorithm Mandated Target Resolution

Assuming 3:4 height to width ratio

42



## **Imagery Resolution Analysis**

- Altitude = 500 ft
- Half-Field of View (FOV) = 30°
- Minimum Target Size = 2 ft
- 7 Pixel Filter

$$R = \left(\frac{2h\cos(\theta)r}{\delta}\right)^2 * \frac{3}{4}$$
$$R = \left(\frac{2*500*\cos(30)*7}{2}\right)^2 * \frac{3}{4}$$
$$R = 6.89 Megapixels$$

- This is a suggested image resolution
- Using a faster algorithm might search an additional pixel, r=8
- Allowing a 9 megapixel resolution

## **Additional Image Criteria**

- Lens Quality
- Distortion
- Image Stabilization
- Computer Controllability

## End of Presentation

- Concept 1 : Still-Image Camera
- Nikon D300 DSLR (Digital Single-Lens Reflex) Camera
- Engineering Analysis:
  - Weight: 1.9 lbs
  - Mounting: Gimbal
  - Resolution: 10.2-Megapixel
  - Zoom: 11.1X Optical
  - Transmission ability: Still images
  - **Price:** \$1400
  - Toughness: Magnesium alloy body
  - Power Requirements: Dedicated Battery
  - Dimensions: 5.8" x 4.5" x 2.9"



- Concept 2: CCD Color Video Camera
- Sony KX -181 HQ Camera
- Engineering Analysis:
  - Weight: 0.055 lbs
  - Mounting: Gimbal
  - Resolution: 520 TV line
  - Zoom: None
  - Transmission ability: Video Stream (46 dB)
  - **Price:** \$104
  - Toughness: Plastic/metal casing
  - Power Requirements: 12 V/ 100 mA
  - **Dimensions:** 1" x 1" x 1"



- Concept 3: CCD Block Camera
- Sony FCB IX11A Miniature Color Block Camera
- Engineering Analysis:
  - Weight: 0.21 lbs
  - Mounting: Gimbal
  - Resolution: 470 TV line
  - Zoom: 10X Optical, 4X Digital
  - Transmission ability: 38.4 kbps Serial Stream
  - **Price:** \$400
  - Toughness: Metal casing
  - Power Requirements: 12 V/ 6000 mA
  - Dimensions: 1.6" x 1.9" x 2.6"



- Concept 4: Pan Tilt Zoom Network Camera
- Axis 212 Ptz Network Camera
- Engineering Analysis:
  - Weight: 1.1 lbs
  - Mounting: Simple attachment
  - Resolution: 640 X 480 (3.1 Mega Pixels)
  - Zoom: 3X Optical
  - Transmission ability: 30 fps VGA with audio
  - **Price:** \$630
  - Toughness: 2200 lb Impact Resistant casing
  - Power Requirements: 5 V/ 1400 mA
  - Dimensions: 11" x 10" x 5"



#### Decision Matrix:

| Camera Decision Matrix |        | Nikon D300 DSLR |            | Sony KX-181 HQ |            | Sony FCB Block |            |  | Axis 212 Ptz |            |  |
|------------------------|--------|-----------------|------------|----------------|------------|----------------|------------|--|--------------|------------|--|
| Criteria               | weight | Grade           | Weighted G | Grade          | Weighted G | Grade          | Weighted G |  | Grade        | Weighted G |  |
|                        |        |                 |            |                |            |                |            |  |              |            |  |
| Weight                 | 0.2    | 2               | 0.4        | 5              | 1          | 4              | 0.8        |  | 3            | 0.6        |  |
| Mounting               | 0.15   | 3               | 0.45       | 3              | 0.45       | 3              | 0.45       |  | 5            | 0.75       |  |
| Resolution             | 0.08   | 5               | 0.4        | 3              | 0.24       | 3              | 0.24       |  | 3            | 0.24       |  |
| Zoom                   | 0.08   | 5               | 0.4        | 0              | 0          | 4              | 0.32       |  | 3            | 0.24       |  |
| TX Ability             | 0.1    | 3               | 0.3        | 4              | 0.4        | 5              | 0.5        |  | 4            | 0.4        |  |
| Price                  | 0.15   | 1               | 0.15       | 5              | 0.75       | 3              | 0.45       |  | 2            | 0.3        |  |
| Toughness              | 0.05   | 4               | 0.2        | 3              | 0.15       | 2              | 0.1        |  | 5            | 0.25       |  |
| Power Req.             | 0.1    | 5               | 0.5        | 4              | 0.4        | 2              | 0.2        |  | 3            | 0.3        |  |
| Dimensions             | 0.09   | 2               | 0.18       | 5              | 0.45       | 3              | 0.27       |  | 1            | 0.09       |  |
|                        |        |                 |            |                |            |                |            |  |              |            |  |
| Total                  | 1      | 30              | 2.98       | 32             | 3.84       | 29             | 3.33       |  | 29           | 3.17       |  |